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Summary
Human glutamate carboxypeptidase II (GCPII) is involved in neuronal signal transduction and
intestinal folate absorption by means of the hydrolysis of its two natural substrates, N-acetyl-aspartyl-
glutamate (NAAG) and folyl-poly-γ-glutamates, respectively. During the past years, tremendous
efforts have been made towards the structural analysis of GCPII. Crystal structures of GCPII in
complex with various ligands have provided insight into the binding of these ligands, particularly to
the S1′ site of the enzyme. In this paper, we have extended structural characterization of GCPII to
its S1 site by using dipeptide-based inhibitors that interact with both S1 and S1′ sites of the enzyme.
To this end, we have determined crystal structures of human GCPII in complex with phosphapeptide
analogs of folyl-γ-glutamate, aspartyl-glutamate and γ-glutamyl-glutamate, reined at resolution of
1.50 Å, 1.60 Å and 1.67 Å, respectively. The S1 pocket of GCPII could be accurately defined and
analyzed for the first time, and the data indicate the importance of Asn519, Arg463, Arg534, and
Arg536 for recognition of the penultimate (i.e., P1) substrate residues. Direct interactions between
the positively charged guanidinium groups of Arg534 and Arg536 and a P1 moiety of a substrate/
inhibitor provide mechanistic explanation of GCPII preference for acidic dipeptides. Additionally,
observed conformational flexibility of the Arg463 and Arg536 side chains likely regulates GCPII
affinity towards different inhibitors and modulates GCPII substrate specificity. The biochemical
experiments assessing the hydrolysis of several GCPII substrate derivatives modified at the P1
position, also included in this report, further complement and extend conclusions derived from the
structural analysis. The data described here form an excellent foundation for the structurally aided
design of novel low-molecular weight GCPII inhibitors and imaging agents.
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Introduction
In humans, the nervous system, small intestine, kidney and prostate are major sites of
expression of glutamate carboxypeptidase II (GCPII, E.C. 3.17.21), a zinc-dependent
metallopeptidase.1-3 Within the nervous system and small intestine, GCPII hydrolyses its two
recognized natural substrates, N-acetyl-aspartyl-glutamate (NAAG) and folyl-poly-γ-
glutamates, participating directly in signal transmission via neural pathways and intestinal
folate absorption, respectively.4,5 In the kidney and prostate, the physiological function
remains unknown.

As NAAG hydrolysis by GCPII in the nervous system leads to the increase in extracellular
glutamate levels, the enzyme represents a therapeutic target for treatment of pathologies
associated with dysregulated glutamatergic transmission.6,7 Highly selective and potent GCPII
inhibitors were reported in the past8-12, and these showed efficacy in a variety of experimental
models of neurological disorders, including neuropathic and inflammatory pain, stroke,
diabetic neuropathy, amyotrophic lateral sclerosis, and schizophrenia (see refs.13,14 and
references therein). Moreover, GCPII is an excellent target for prostate cancer imaging and
therapy because of its membrane localization and highly upregulated expression in prostate
tumors and metastases.15 Several reports have demonstrated the feasibility of imaging of
GCPII-positive cells in experimental models of prostate cancer in vitro and in vivo, using low
molecular weight GCPII ligands.16-18 Optimization of such therapeutic and diagnostic
strategies could greatly benefit from structural studies on GCPII.

Recently published X-ray structures of GCPII offered the first insight into the substrate binding
cavity of the protein. A series of three GCPII structures reported by Mesters et al19 highlighted
the preferences of GCPII for substrates containing the C-terminal glutamate, and led to the
hypothesis of an induced-fit mechanism of substrate recognition. The subsequent structural
study addressing GCPII inhibition by the glutamate mimetics/derivatives illustrated a
flexibility of the S1′ pocket of the enzyme and helped to define the structural features required
for potent GCPII inhibition.20

In contrast, little is understood about the interaction of the penultimate residue of GCPII
substrates with the S1 site of the enzyme, despite the important role of this residue in substrate
recognition.21-23 To address this issue, we utilized three phosphapeptide analogs of GCPII
substrates in which the planar scissile peptide bond is substituted by a phosphinate moiety.
These compounds mimic unstable tetrahedral transition state formed during the course of
substrate hydrolysis24 and potently inhibit GCPII by interacting with both S1 and S1′ sites of
the enzyme (Figure 1). Structures of GCPII in complex with these inhibitors should shed light
on structural features of P1-S1 interactions as well as their role in binding of the inhibitors to
the enzyme. The relevance of this research is further supported by the fact that covalent
conjugates of one of the inhibitors described in this study (EPE) were successfully used in
preclinical studies as contrast agents for image-guided surgery and radiotherapy.17,25

Consequently, our data on the nature of enzyme-substrate/inhibitor interactions should aid the
development of novel low molecular weight GCPII inhibitors and imaging agents.
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Results
Phosphapeptide analogs of GCPII substrates

Unstable tetrahedral transition state formed during metallopeptidase-catalyzed peptide
hydrolysis can be mimicked by phosphinate analogs of respective substrates, and such
compounds have been shown to be effective in inhibiting various enzymes including GCPII.
8,26 Phosphinates used in this study include 2-[(3-{4-[(2-amino-4-hydroxy-pteridin-6-
ylmethyl)-amino]-benzoylamino}-3-carboxy-propyl)-hydroxy-phosphinoylmethyl]-
pentanedioic acid (MPE), (2S,3′S)-{[(3′-Amino-3′-carboxy-propyl)-hydroxyphosphinoyl]
methyl}-pentanedioic acid (EPE), and (2S)-2-{[(2-carboxy-ethyl)-hydroxy-phosphinoyl]
methyl}-pentanedioic acid (SPE). MPE, EPE, and SPE could be viewed as analogs of GCPII
substrates folyl-γ-glutamate, γ-glutamyl-glutamate, and aspartyl-glutamate, respectively
(Figure 1).

The synthesis of MPE has been described previously27 and the compound has been provided
as a mixture of four diastereomers. Meanwhile, EPE and SPE are provided as single
stereoisomers with stereochemistry corresponding to L-γ-Glu-L-Glu and aspartyl-L-Glu,
respectively (Figure 1). We determined that all three compounds are potent inhibitors of GCPII
with IC50 values of 0.12 nM, 14 nM and 0.7 nM for MPE, EPE and SPE, respectively (Table
I).

An entrance to the GCPII substrate-binding cavity could be closed by the flexible Trp541-
Gly548 loop

The overall fold of the three rhGCPII complexes is similar as demonstrated by r.m.s. deviations
of 0.75 Å and 0.74 Å between the rhGCPII/MPE complex and the rhGCPII/EPE or rhGCPII/
SPE complexes, respectively. The only notable exception is the fragment Trp541-Gly548 (the
‘entrance lid’), for which the maximum displacement between equivalent Cα-atoms reaches
9.4 Å (for rhGCPII/MPE and rhGCPII/SPE). In both rhGCPII/SPE and rhGCPII/EPE
complexes, the ‘entrance lid’ accommodates closed conformation, effectively shielding the
active-site bound ligands from the external space. In the rhGCPII/MPE complex, the ‘entrance
lid’ adopts an open conformation, due to a steric barrier presented by the bulky distal (pteroyl)
part of the inhibitor (Figure 2 and Supplementary Figure S1). Motion of the ‘entrance lid’ is
realized by the flipping of the peptide bond between Asn540 and Trp541 at one hinge and
flexibility of Gly548 at the other hinge. The side chain of Tyr549, adjacent to the second hinge
(Gly548), is inserted into a hydrophobic pocket shaped by Ile386, Asp387, Glu457, Tyr552,
Glu557, Leu561, and Tyr566, and evidently plays a role of an anchor at the C-terminal side of
the ‘entrance lid’.

Enzyme-inhibitor interactions within the S1′ pocket and at the vicinity of Zn2+ ions
MPE, one of the phosphapeptides co-crystallized with rhGCPII, features 1′-(R,S)-
methylglutarate as the C-terminal moiety (Figure 1). In agreement with the reported
preferences of GCPII for L-amino acids at the P1′ (i.e., C-terminal) position4,23, only the (1′-
S) diastereomer of MPE was identified to be bound in the rhGCPII active-site. The arrangement
of the C-terminal part of all inhibitors within the S1′ pocket is virtually identical to the binding
mode of a free glutamate reported previously, with all principal enzyme-inhibitor interactions
preserved19 (Figure 3 and Supplementary Figure S2).

The phosphinate group of each inhibitor mimics the gem-diolate of a tetrahedral transition state
of the reaction, and this functionality contributes prominently to the high affinity of the inhibitor
towards GCPII.8 The phosphinate group interacts with the enzyme via contacts with both
Zn2+ ions, with the interatomic distances of 2.0 Å (O1...Zn1) and 1.9 Å (O2...Zn2; distances
are taken from the rhGCPII/MPE complex). The O1 oxygen atom forms additional hydrogen
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bonds with the side chains of Tyr552 (2.7 Å), His553 (3.0 Å), and Asp387 (3.2 Å), while the
second oxygen atom from the phosphinate group (O2) interacts with the side chains of His377
(3.1 Å), Asp387 (3.1 Å), Asp453 (3.1 Å), and Glu425 (3.2 Å).

Additionally, the O2 atom forms a hydrogen bond (2.8 Å) with the γ-carboxylate of Glu424,
which is positioned at the distance of 3.2 Å from a carbon atom substituting the peptide-bond
amide of a ‘real’ dipeptidic substrate (Supplementary Figure S2). The side chain of Glu424
can thus participate in proton transfer from the activated water molecule to the ultimate nitrogen
of the newly formed N-terminus of a hypothetical reaction product. This data support an earlier
prediction suggesting that the Glu424 residue acts as a proton shuttle during hydrolysis by
GCPII.28

The S1 pocket of GCPII and positional flexibility of Arg536 and Arg463
Principal interactions between rhGCPII and a carboxylate group of a P1 moiety of a substrate
are mediated via side chains of Asn519, Arg534, and Arg536. Arginine residues 534, 536, and
463 form a positively charged patch on the wall of the S1 pocket that determines a preference
of GCPII for acidic dipeptides (Figure 4). An important feature of the S1 arginines (notably
Arg536 and to a lesser extent Arg463) is their discrete flexibility. Arg536 can adopt two distinct
conformations, referred here as the ‘stacking’ conformation and the ‘binding’ conformation.
In the ‘stacking’ conformation, Arg536 is not available for substrate binding and its
guanidinium group is wedged between the guanidinium groups of Arg534 and Arg463. This
conformation is further stabilized by an ion-pair interaction with the Asp465 carboxylate and
a hydrogen bond with the Arg463 carbonyl oxygen. The transition into a ‘binding’
conformation is associated with a 4.5 Å shift (measured by the displacement of Cζ atom) of
the guanidinium group. Here, stabilization as well as the charge neutralization are provided
primarily by the S1-bound chloride anion (Nη1...Cl-, 3.5 Å) and the Glu457 carboxylate
(Nη2...Oε1, 2.7 Å; Figure 5A).

GCPII-phosphapeptide interactions in the S1 site
Only two direct contacts between GCPII and SPE are observed in the S1 pocket of the enzyme.
They are represented by hydrogen bonds between one of the carboxylate oxygen atoms of SPE
and the side chains of Asn519 (2.8 Å) and Arg534 (2.8 Å). The remaining four indirect
interactions between GCPII and SPE are mediated by the S1-bound water molecules. It should
be noted that in the rhGCPII/SPE complex, the Arg536 adopts both ‘stacking’ and ‘binding’
conformations, with the ‘stacking’ conformation being more populated (about 70%). The
arrangement of the Arg536 side chain is similar to that in the ligand-free GCPII structure29,
implying that the SPE binding is not associated with significant conformational changes within
the S1 site. Similar arrangement of the S1 site and comparable set of enzyme-ligand interactions
are observed in the rhGCPII/EPE complex (Figure 5B).

Analysis of the S1 site in the rhGCPII/MPE complex reveals considerable rearrangements of
the S1 arginines. Here, the guanidinium group of Arg463 forms a hydrogen bond with the
carbonyl oxygen of the benzoyl group (3.2 Å) of the inhibitor and this interaction is assisted
by the 2.0 Å shift of the Arg463 side chain. The alternate position of Arg463 is stabilized by
electrostatic interactions between its guanidinium group and carboxylate groups of Glu457 and
Asp465. Repositioning of Arg463 places it closer to the side chain of Arg534 (4.9 Å), sterically
preventing Arg536 from adopting the ‘stacking’ conformation. Consequently, in the rhGCPII/
MPE complex only the ‘binding’ conformation is observed for the Arg536 side chain
contributing two additional hydrogen bonds formed with the γ-carboxylate of the P1 glutamate
(3.1 Å and 2.7 Å; Figure 6). The absence of contacts between the distal (i.e., pteroyl) part of
MPE and the enzyme suggests that the observed rearrangement of the S1 arginines is
responsible for the 100-fold increase in affinity of GCPII toward MPE, as compared to EPE
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(Table I). Finally, it was somewhat unexpected to find that the absolute configuration at the
P1 glutamate of MPE, unambiguously clear from the electron density map, corresponds to the
(1-R) diastereomer, i.e., configuration equivalent to D-glutamate, even though the (1-RS)
diastereomers were used in the study (Figure 1).

Effects of P1 modifications on substrate hydrolysis
To corroborate and extend conclusions drawn from the presented crystal structures, we
designed and synthesized GCPII substrates modified at the P1 moiety and analyzed their
hydrolysis by rhGCPII. Molecular formulas of the substrates together with the corresponding
kinetic parameters, as determined by an HPLC assay (see Materials and Methods), are
summarized in Table II. In agreement with structural analysis of the rhGCPII/MPE complex,
we found that Ac-γ-D-Glu-L-Glu binds to GCPII slightly better than the Ac-γ-L-Glu-L-Glu
form. On the other hand, the 1-D enantiomers of the remaining dipeptides tested (i.e., NAAG,
β-NAAG, and Ac-D-Glu-L-Glu) are hydrolyzed by rhGCPII less efficiently than
corresponding dipeptides with the 1-L stereochemistry. An observed 10 to 100-fold decrease
in the catalytic efficiency of rhGCPII towards 1-D enantiomers is attributable to both the
increase in substrate binding constants and lower turnover numbers.

To assess the importance of N-acetylation and a size of P1 residues for substrate hydrolysis by
GCPII, we synthesized a series of dipeptides lacking the N-terminal acetylated amino group
and differing in the length of a P1 side chain (from carboxymethyl to carboxybutyl; Table II).
Comparison of kinetic parameters with corresponding data on N-acetylated dipeptides reveals
that N-acetylation does not contribute significantly to the binding affinity of a substrate. In
addition, we show that succinyl-L-Glu and glutaryl-L-Glu, analogous to NAAG and Ac-Glu-
L-Glu, respectively, are the best substrates within this series, even though all of the substrates
within this series bind rhGCPII with the comparable affinity in the low micromolar range.

Discussion
The main objective of this work was to enhance our understanding of the interactions governing
substrate specificity of human GCPII, with particular emphasis on the S1 pocket. Our results
provide a mechanistic insight into GCPII preferences for dipeptides with acidic side chains
and can also be used for the structurally aided design of novel therapeutics. For example, the
EPE phosphapeptide used in this study serves as a modular ligand for the GCPII active site
with the amino group utilized for an incorporation of various functional groups, including
fluorescent dyes or radiolabels.17,25 Such derivatives could be exploited as GCPII inhibitor-
based imaging agents or therapeutics for prostate cancer and/or neurodegenerative diseases
and provide an alternative to conventional antibody-based applications.

The examination of the rhGCPII structure in complex with MPE reveals that only the glutamate
residues and the benzoyl carbonyl oxygen interact with the enzyme, while the pteridine ring
is located outside of the GCPII substrate binding pocket. Contrary to the C-terminal part of the
inhibitor, which is well defined in the electron density map, the absence of the electron density
for the pteridine ring indicates its high flexibility. This observation supports previous findings
that a wide variety of functional groups could be attached to the N-terminal amino group of
EPE without an appreciable loss of an inhibitor affinity.17,30,31 This trend is also supported by
the study of Luthi-Carter et al who showed that there is no significant difference in GCPII
affinity towards non-substituted poly-γ-glutamates and their pteroyl or aminobenzyl
derivatives. Furthermore, the degree of poly-γ-glutamylation did not affect binding affinity of
a substrate as long as it possessed at least two glutamyl residues.30 These results agree well
with our structural observations and strengthen the conclusions drawn for EPE and its
derivatives.
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Although MPE was provided as a mixture of four diastereomers, the crystal structure shows
only a single diastereomer corresponding to γ-D-Glu-L-Glu bound to GCPII. This finding is
not necessarily surprising given that both Ac-γ-D-Glu-L-Glu and Ac-γ-L-Glu-L-Glu are
equally potent substrates for rhGCPII (with the D-form even slightly better; Table II). While
there is convincing experimental evidence that the L-stereochemistry is much preferred at the
C-terminus of GCPII substrates/inhibitors4,20,23,32, the enzyme is evidently more tolerant to
varying stereochemistry at the P1 position. However, the stereochemical preference of GCPII
at the P1 position is clearly regioselective and likely depends on the nature/chemistry of a
functionality attached to the P1 moiety (ref.33 and data presented here). For example, while
Ac-γ-L-Glu-L-Glu and Ac-γ-D-Glu-L-Glu show similar KM and kcat values, the kinetic
constants for Ac-α-L-Glu-L-Glu and Ac-α-D-Glu-L-Glu exhibit significant difference with the
L-stereoisomer being clearly preferred. Overall, these observations suggest that specificity
towards P1 modified ligands would be dictated by the combination of stereochemistry and
regiochemistry of the peptide bond (or its mimetics) as well as the physicochemical
characteristics of a P1 substituent.

Comparison of rhGCPII/MPE and rhGCPII/SPE(EPE) complexes indicates substantial
differences in positioning of the Trp541-Gly548 amino acid segment (the ‘entrance lid’) that
can shield the substrate binding cavity of GCPII from an extracellular environment. It is
interesting to note that in the high-resolution structures of GCPII complexes and ligand-free
GCPII published previously, a portion of the ‘entrance lid’ was not modeled, due to the lack
of corresponding electron density, implying high positional flexibility of this loop.20,29 Our
observations suggest that the closed conformation of the ‘entrance lid’ might be stabilized by
ligand binding in the active-site of GCPII (i.e., the occupancy of the S1 pocket by a glutamate/
aspartate moiety of the substrate/inhibitor), despite the lack of direct contacts between a ligand
and the ‘entrance lid’. Additionally, when larger substrates such as folyl-poly-γ-glutamates are
processed by GCPII, the ‘entrance lid’ probably remains open during the course of hydrolysis.
Taken together, an access to the substrate binding cavity of GCPII could be blocked upon
substrate binding, but the closure of the ‘entrance lid’ is not required for substrate hydrolysis
to occur.

Thermal parameters of the P1′ residues of inhibitors are substantially lower when compared
to the P1 counterparts. While C-termini of MPE, EPE, and SPE have an average B-factor of
18.3, 21.2, and 17.8 Å2, respectively, the corresponding P1 residues are characterized by the
B-factors’ values of 26.0, 34.0, and 27.0 Å2, respectively. The decreased mobility of atoms at
the C-termini of the ligands suggests tighter binding of this fragment to the enzyme. This fact
is in good agreement with available biochemical evidence. Site-directed mutagenesis of GCPII
residues participating in the substrate/inhibitor binding has led to the suggestion that amino
acids defining the S1′ pocket are required for the high-affinity interactions with substrates/
inhibitors, while the residues within S1 pocket might be more important for the ‘fine-tuning’
of the GCPII substrate specificity.34 Furthermore, structure-activity relationship (SAR)
analyses revealed that although a wide variety of substitutions are tolerated at the P1 position
of phosphinate/urea-based inhibitors without a significant loss of potency, the P1′ moiety is
very sensitive to structural changes and is primarily responsible for tight GCPII binding.8,9,11

Several mammalian homologs and orthologs of GCPII have been described in literature.35

Alignment of the available amino acid sequences reveals that, with the exception of Asn519,
all of the S1 residues are conserved among NAAG-peptidases (i.e., GCPII and GCPIII), while
the only S1 residue shared between human GCPII and mammalian NAALADases L is Arg463.
This observation suggests that the architecture of the S1 site of human GCPII and its
mammalian GCPII/GCPIII homologs/orthologs is similar and that comparable enzyme-
substrate interactions could exist within the S1 site. On the other hand, the observed variability
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of the S1 residues in NAALADases L is consistent with distinct (yet unknown) substrate
specificities of these enzymes and their inability to hydrolyze NAAG.36

Conclusions
The data presented here allow for the first time a detailed definition and analysis of the S1 site
of GCPII. In particular, the structural observations provide mechanistic insight into GCPII-
substrate interactions and help to understand the substrate specificity of the enzyme.
Furthermore, structures of rhGCPII/inhibitor complexes can assist the rational design and
development of novel diagnostic and therapeutic agents targeting GCPII.

Experimental Section
rhGCPII expression and purification

Recombinant human GCPII (rhGCPII) comprising amino acids 44 to 750 of the full-length
enzyme was expressed and purified as described previously.21 Briefly, the extracellular part
of human GCPII was overexpressed in the Drosophila Schneider’s S2 cells and the protein
was purified from the conditioned medium by the combination of ion-exchange (Q-Sepharose
and SP-Sepharose; GE Healthcare), affinity (Lentil-Lectin Sepharose; GE Healthcare), and
size-exclusion (Superdex HR200, GE Healthcare) chromatography steps. The final protein
preparation was >98% pure (as determined by silver-stained SDS-PAGE, data not shown). The
rhGCPII stock solution (10 mg/ml, determined using Bio-Rad Protein Assay kit with bovine
serum albumin as a standard) in 20 mM Tris-HCl, 100 mM NaCl, pH 8.0, was frozen in liquid
nitrogen and stored at -80°C until further use.

Synthesis of phosphapeptide inhibitors
The synthesis of MPE has been described previously.27 The syntheses of SPE and EPE are
described in the Supplementary Material (Scheme 1, 2). For crystallization experiments, SPE
and EPE were dissolved in distilled water to a final concentration of 50 mM. MPE was dissolved
in distilled water (50 mM) and pH of the solution adjusted to 7.0 with NaOH. For kinetic
measurements, the inhibitors were dissolved in 20 mM MOPS, 20 mM NaCl, pH 7.4.

Crystallization and X-ray data collection
The rhGCPII stock solution was mixed with 1/10 volume of the individual phosphinate
substrate analog, and the crystallization droplets were prepared by combining 2 μl of the
rhGCPII-analog mixture and 2 μl of the reservoir solution containing 33% pentaerythriol
propoxylate (PO/OH 5/4; Hampton Research), 1% PEG3350, and 100 mM Tris-HCl, pH 8.0.
Crystals were grown by the hanging drop vapor diffusion method at 293 K. Pyramidal crystals,
of the dimensions of approximately 0.5 × 0.4 × 0.1 mm, belonging to the I222 space group
with one rhGCPII molecule per the asymmetric unit, grew typically within one week. The
crystals were flash-frozen in liquid nitrogen directly from the reservoir solution and the
diffraction data were collected at 100 K, using synchrotron radiation at the SER-CAT sector
22 beamlines of the Advanced Photon Source (Argonne, IL, USA) at the X-ray wavelength of
1.0 Å (rhGCPII/MPE and rhGCPII/EPE complexes) or 0.976 Å (the rhGCPII/SPE complex).
In all cases, the diffraction intensities were collected from a single crystal, recorded on a CCD
detector and processed using the HKL2000 software package.37

Structure determination and refinement
Since the crystals of the rhGCPII complexes were isomorphous with the crystals of ligand-free
rhGCPII29 (PDB code 2OOT), the latter was used as the starting model for the structure
determination using difference Fourier methods. The initial structure determinations, carried
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out at a resolution of 2.5 Å, were followed by the refinement of individual atomic coordinates
and B-factors, with gradual extension of the resolution to the limits of the experimental data.
Calculations were performed with the program Refmac 5.138, and the refinement protocol was
interspersed with manual corrections to the model, employing the programs O39 and Xtalview.
40 In the final stage of the refinement, the anisotropic model of the displacement parameters
(B-factors) was applied to all non-hydrogen atoms in the rhGCPII/MPE complex, and to “heavy
atoms” (i.e., S, Zn2+, Ca2+, and Cl-) of rhGCPII/EPE and rhGCPII/SPE complexes. During the
refinement process, ∼ 1% of the randomly selected reflections were kept aside for cross-
validation (Rfree). The data collection and refinement statistics are shown in Table III.

Synthesis of peptidic substrates
Peptide substrates were synthetized using an ABI 433A Peptide Synthesizer (Applied
Biosystems, Foster City, CA, USA) and a standard Fmoc chemistry method.

Determination of kinetic constants
Purified rhGCPII was mixed with various concentrations (2-400 μM) of a substrate in solution
containing 20 mM MOPS (pH 7.4) and 20 mM NaCl to a final volume of 120 μl. Following
20 min incubation at 37 °C, the reaction was terminated by the addition of 60 μl of solution
containing 33 mM EDTA and 66 mM sodium borate (pH 9.2). Released glutamate was
derivatized using 20 μl of an AccQ-Fluor reagent (Waters, Milford, MA), dissolved in
acetonitrile. The resulting mixture was resolved on a Luna C18 column 250 × 4.6 mm, 5 μm
(Phenomenex, Torrance, CA) mounted to a Waters Alliance 2795 system equipped with a
Waters 2475 fluorescence detector using a 20%-35% linear gradient of B (56 mM sodium
acetate, 6.8 mM triethanolamine, 60% acetonitrile, pH 6.6) in A (140 mM sodium acetate, 17
mM triethanolamine pH 5.05) over 9 mins. Glutamate quantification was performed using a
calibration curve constructed from known concentrations of a glutamic acid standard. The
KM and kcat values were determined from reaction rate vs. substrate concentration plots using
the GraFit program (version 5.0.4, Erithacus Software Limited, Horley, UK).

Determination of inhibition constants
The inhibition constants of rhGCPII were determined by an enzymatic assay using 3H-NAAG
(radiolabeled on the terminal glutamate) as described previously.22 rhGCPII (30 ng/ml) was
preincubated with increasing concentrations of inhibitors in the solution containing 20 mM
MOPS (pH 7.4) and 20 mM NaCl at 37 °C for 15 mins. The reaction was started by an addition
of 20 μl of the mixture of 0.95 μM NAAG (Sigma) and 50 nM 3H-NAAG (50 Ci/mmol in Tris-
HCl buffer, Perkin Elmer) to the total reaction volume of 200 μl. Following 20 min incubation,
the reaction was terminated by the addition of 200 μl of 200 mM potassium phosphate (pH
7.4). Glutamate was separated from the reaction mixture by an ion exchange chromatography
and quantified by a liquid scintillation. Each experimental point was measured in duplicate.
The IC50 values were determined from plots of vi/v0 (ratio of individual reaction rate to rate
of uninhibited reaction) vs. inhibitor concentration using the GraFit software.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Chemical formulas of GCPII substrates (Panel A) and phosphinate transition-state
analogs thereof (Panel B)
Panel A, folyl-γ-glu, a natural GCPII substrate present in the small intestine; γ-glu-glu; γ-
glutamyl-glutamate; NAAG, N-acetyl-aspartyl-glutamate, a dipeptidic natural GCPII
substrate in the nervous system. Panel B, MPE, 2-[(3-{4-[(2-amino-4-hydroxy-pteridin-6-
ylmethyl)-amino]-benzoylamino}-3-carboxy-propyl)-hydroxy-phosphinoylmethyl]-
pentanedioic acid; EPE, (2S,3′S)-{[(3′-Amino-3′-carboxy-propyl)-hydroxyphosphinoyl]
methyl}-pentanedioic acid; SPE, (2S)-2-{[(2-carboxy-ethyl)-hydroxy-phosphinoyl]methyl}-
pentanedioic acid. Chiral centers are indicated by asterisks, numbers 1 and 1′ mark P1 and P1′
chiral centers, respectively.
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Figure 2. The substrate binding cavity of GCPII can be closed by the ‘entrance lid’
Panel A, Superposition of the ‘entrance lids’ from rhGCPII/MPE and rhGCPII/SPE
complexes. The model of rhGCPII/MPE is shown in cartoon representation and colored gray.
The ‘entrance lid’, formed by the amino acids Trp541-Gly548, is painted in red and blue for
the open (observed in the rhGCPII/MPE complex) and closed (taken from the superimposed
structure of the rhGCPII/SPE complex) conformations, respectively. The active site-bound
SPE inhibitor is represented by sticks and the active-site Zn2+ ions by magenta spheres. Panels
B and C, A close-up view of the ‘entrance lid’ in open/closed conformation. The protein is
represented by its molecular surface with the ‘entrance lid’ colored in red or in blue for the
open (rhGCPII/MPE, Panel B) and closed (rhGCPII/SPE, Panel C) conformations,
respectively. The molecule of MPE, visible in the current projection, is represented by sticks
(Panel B), while a molecule of SPE is buried by the ‘entrance lid’ (Panel C). A surface defined
by the active-site zinc ions is colored in magenta.
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Figure 3. The electron density maps of the substrate binding cavity of human GCPII in complex
with SPE (Panel A) and EPE (Panel B)
The protein residues are shown in ball-and-stick representation, while Zn2+ and Cl- ions are
depicted as blue and yellow spheres, respectively. The Fo-Fc electron density omit maps around
inhibitor molecules are contoured at the 3σ level (green) and the 2Fo-Fc electron density maps
at the 1σ level (blue). The picture was generated using Molscript41, Bobscript42 and rendered
with PovRay.
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Figure 4. The active site of human GCPII with the EPE inhibitor bound
The dissected substrate-binding cavity of GCPII is represented by its molecular surface and
the active site-bound EPE inhibitor is shown in stick representation. The atoms are colored
blue (nitrogen), red (oxygen), green (phosphorus), yellow (Zn2+ ions), and gray (carbon atoms).
Note the patch of positively charged arginines 463, 534 and 536 contributing towards the
preference of GCPII for acidic residues in the P1 position of a substrate. The figure has been
generated using Pymol.
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Figure 5. The side chain of Arg536 adopts two alternate conformations
Panel A, Arrangement of S1 arginines in the rhGCPII/SPE complex. Arginine 536 can adopt
two distinct conformations referred to as the ‘stacking’ (R536s) and ‘binding’ (R536b)
conformation, respectively. Transition between the two conformations is associated with a 4.5
Å shift of the guanidinium group. The atoms are colored blue (nitrogen), red (oxygen), gray
(carbon) and yellow (the chloride ion). Polar interactions stabilizing individual conformations
of Arg536 are shown as dashed lines. The SPE inhibitor and water molecules have been omited
for clarity. Panel B, Superposition of SPE and EPE inhibitors in the substrate-binding cavity
of GCPII. The rhGCPII/EPE and rhGCPII/SPE complexes were superimposed based on
corresponding Cα atoms (only GCPII atoms from the rhGCPII/SPE complex are shown). The
S1 residues and the active-site bound inhibitors are shown in stick representation, Zn2+ and
Cl- ions as blue and yellow spheres, respectively. The atoms are colored blue (nitrogen), red
(oxygen), gray (rhGCPII/SPE carbons), cyan (EPE carbons), and green (phosphorus). Direct
polar interactions between inhibitors and the protein in the S1 pocket are shown as dashed
lines.
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Figure 6. MPE binding leads to rearrangement of the S1 arginines of GCPII
Repositioning of Arg463 by 2.0 Å prevents Arg536 from adopting the ‘stacking’ (R536s)
conformation. As a result, only the ‘binding’ (R536b) conformation of Arg536 is observed in
the rhGCPII/MPE complex. The rhGCPII/MPE and rhGCPII/EPE complexes were
superimposed using corresponding Cα atoms. A protein part of the rhGCPII/MPE complex is
shown in cartoon representation and selected amino acid residues from both complexes and
the active-site bound MPE are shown in stick representation. Zn2+ and Cl- ions are depicted
as blue and yellow spheres, respectively. Atoms are colored blue (nitrogen), red (oxygen), gray
(rhGCPII/MPE carbons), cyan (rhGCPII/EPE carbons) and green (phosphorus). Direct H-
bonding interactions between MPE and the protein in the S1 pocket are shown as dashed lines.
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Table I
Inhibition of rhGCPII by phosphapeptide analogs of transition state reaction intermediates

Inhibitor IC50 (nM)

MPE 0.12 ± 0.03*

EPE 14.0 ± 4.2

SPE 0.70 ± 0.26
*
Data taken from22
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Table II
rhGCPII-catalyzed hydrolysis of acidic dipeptides modified at the P1 position

Substrate Molecular Structure KM (μM) kcat (s
-1) kcat/KM (103s-1M-1)

N-Ac-L-Asp-L-Glu (NAAG) 1.2 ± 0.5# 1.1 ± 0.2 917

N-Ac-D-Asp-L-Glu 3.1 ± 0.6 0.27 ± 0.01 87

N-Ac-β-L-Asp-L-Glu (β-NAAG) 5.0 ± 1.2 0.14 ± 0.01 28

N-Ac-β-D-Asp-L-Glu ND < 0.02& ND

N-Ac-L-Glu-L-Glu 2.0 ± 0.9 1.0 ± 0.1 500

N-Ac-D-Glu-L-Glu 5.0 ± 1.0 0.026 ± 0.001 5
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Substrate Molecular Structure KM (μM) kcat (s
-1) kcat/KM (103s-1M-1)

N-Ac-γ-L-Glu-L-Glu 4.6 ± 0.7 1.6 ± 0.1 348

N-Ac-γ-D-Glu-L-Glu 3.55 ± 0.90 1.95 ± 0.10 549

N-Malonyl-L-Glu 1.53 ± 0.7 0.049 ± 0.005 32

N-Succinyl-L-Glu < 1.0$ 0.22 ± 0.02 > 220
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Substrate Molecular Structure KM (μM) kcat (s
-1) kcat/KM (103s-1M-1)

N-Glutaryl-L-Glu 2.45 ± 0.90 0.97 ± 0.09 396

N-Adipyl-L-Glu 2.89 ± 0.92 0.14 ± 0.02 48

&
substrate hydrolysis below the detection limit

$
the exact value of the Michaelis constant could not be calculated due to sensitivity limits of the assay

#
data taken from22
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Table III
Data collection and refinement statistics

Data collection statistics

rhGCPII/MPE rhGCPII/EPE rhGCPII/SPE

Wavelength (Å) 1.000 1.000 0.976

Temperature (K) 100 100 100

Space group I222 I222 I222

Unit-cell parameters a, b, c (Å) 102.1, 130.5, 159.5 102.4, 130.8, 159.1 101.5, 130.3, 159.2

Resolution limits (Å) 30.0 - 1.50 (1.55 - 1.50)* 50.0 - 1.67 (1.73 - 1.67) 30.0-1.60 (1.66-1.60)

Number of unique reflections 169,309 (16,622) 119,268 (9,667) 135,823 (13,157)

Redundancy 10.0 (6.6) 10.9 (6.1) 3.9 (3.9)

Completeness (%) 99.5 (98.2) 97.4 (79.1) 97.9 (95.6)

I/σI 19.0 (2.2) 23.4 (2.1) 20.7 (4.3)

Rmerge 0.085 (0.62) 0.091 (0.52) 0.042 (0.29)

Refinement statistics

Resolution limits (Å) 15.0 - 1.50 (1.54 - 1.50) 15.0 - 1.67 (1.72 - 1.67) 15.0 - 1.60 (1.64 - 1.60)

Total number of reflections 166,133 (11,987) 117,320 (6,680) 134,043 (9,606)

Number of reflection in working set 164,450 (11,872) 115,534 (6,577) 132,404 (9,491)

Number of reflection in test set 1,683 (115) 1,786 (103) 1,639 (115)

R / Rfree 0.148 (0.201)/0.169 (0.274) 0.184 (0.314)/0.211 (0.366) 0.181 (0.263)/0.201 (0.31)

Total number of non-H atoms 6,643 6,572 6,601

Number of ligand atoms 43 20 18

Number of ions 4 4 4

Number of water molecules 715 644 661

Average B-factor (Å2)

Protein atoms 25.1 27.7 24.6

Waters 39.4 39.0 36.9

Inhibitor 36.6 25.6 20.8

R.m.s deviations:

Bond lengths (Å) 0.020 0.021 0.020

Bond angles (°) 1.77 1.78 1.88

Planarity (Å) 0.011 0.010 0.011

Chiral-centers (Å3) 0.13 0.13 0.13

Ramachandran Plot (%)

Most favored 90.7 89.7 89.8

Additionally allowed 8.8 9.7 9.5

Generously allowed 0.3 0.5 0.5

Disallowed 0.2 (Lys207) 0.2 (Lys207) 0.2 (Lys207)

Gaps in the structure 44-54, 654-655 44-54, 541, 654-655 44-54, 654-655
*
Values in parentheses correspond to the highest resolution shells.
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